Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Shigeru Ohba, ${ }^{\text {a }}{ }^{*}$ Yohei Yamamoto ${ }^{\text {b }}$ and Koichi Tanaka ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and ${ }^{\mathbf{b}}$ Department of Applied
Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
Correspondence e-mail: ohba@flet.keio.ac.jp

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.054$
$w R$ factor $=0.190$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

rac-3, $\mathbf{3}^{\prime}$-Bis(4-fluorophenyl)-3,3'-dihydroxy2,3,2', $\mathbf{3}^{\prime}$-tetrahydro-[2,2']biindenyl-1,1'-dione

The title compound, $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{4}$, has been obtained as a byproduct in the preparation of biindenylidene compounds. The molecule has a twofold axis. There are intramolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Photochromism of the inclusion crystals of a hydroperoxybiindenylidene has been reported recently by Tanaka et al. (2003). The title compound, (I), was obtained as a by-product in the preparation of the biindenylidene compounds.

(I)

The molecule (I) has a twofold axis, which is parallel to c (Figs. 1 and 2). The central $\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$ bond [symmetry code: (i) $\left.\frac{1}{2}-x, \frac{1}{2}-y, z\right]$ is a single bond (Table 1), which corresponds to no photochromic property of (I), since the photochromism of these crystals seems to be due to the biradical caused by breaking the π-bond at the center of the biindenylidene moiety (Ohba et al., 2003). The indene ring system is not planar, as the five-membered ring has an envelope conformation, with atom C 11 in the flap position. The angle between the planes composed of atoms $\mathrm{C} 12-\mathrm{C} 18 / \mathrm{C} 10$ and $\mathrm{C} 10-\mathrm{C} 12$ is 14.45 (4) ${ }^{\circ}$. The angle between the $\mathrm{C} 10-\mathrm{C} 7$ and its symmetryrelated bond vector is $25.8(1)^{\circ}$, and the dihedral angle between the two fluorophenyl rings is $12.15(10)^{\circ}$. However, the shortest interatomic distance between the fluorophenyl rings is 4.597 (6) \AA for $\mathrm{C} 6 \cdots \mathrm{C} 6^{\mathrm{i}}$, and there is no intramolecular $\pi-\pi$ interaction.

There are intramolecular $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{i}$ hydrogen bonds (Table 2), but no intermolecular hydrogen bonds. This situation contrasts with the crystal structure of the hydroperoxybiindenylidene compound, which forms a ladder structure through the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds, accommodating several guest molecules (Tanaka et al., 2003).

Experimental

Compound (I) was obtained in trace amounts as a by-product in the treatment of 3,3'-bis(4-fluorophenyl)-[2,2']biindenyl-1, 1^{\prime}-dione with Zn and ZnCl_{2} in aqueous tetrahydrofuran to obtain $3,3^{\prime}$-bis(4fluorophenyl) $-3 \mathrm{H}, 3^{\prime} \mathrm{H}-\left[2,2^{\prime}\right]$ biindenylidene-1, 1^{\prime}-dione (22% yield) and $\quad 3,1^{\prime}$-bis(4-fluorophenyl)- 1^{\prime}-hydroperoxy- 3^{\prime}-hydroxy- $1^{\prime}, 3^{\prime}$-dihy-dro-3H-[2, 2^{\prime}]biindenyliden-1-one (7\% yield; Tanaka et al., 2003). The

Received 25 July 2003
Accepted 1 August 2003
Online 8 August 2003

A view of the molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. [Symmetry code: (*) $\frac{1}{2}-x$, $\left.\frac{1}{2}-y, z.\right]$
reaction mechanism which gave (I) is expected to be similar to that reported by Xu et al. (2002). Colourless crystals of (I) were grown from an ethyl acetate solution by slow evaporation (m.p. 482-485 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{4} \\
& M_{r}=482.48 \\
& \text { Orthorhombic, Pccn } \\
& a=8.303(2) \AA \AA \AA \\
& b=12.011(3) \AA \\
& c=22.868(6) \AA \\
& V=2280.6(10) \AA^{3} \\
& Z=4 \\
& D_{x}=1.405 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation

Cell parameters from 20 reflections
$\theta=13.0-14.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate, colourless
$0.5 \times 0.4 \times 0.3 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer ω scans
Absorption correction: none
3523 measured reflections
2622 independent reflections
1644 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma F^{2}\right]=0.054$
$w R\left(F^{2}\right)=0.190$
$S=1.03$
2622 reflections
164 parameters
H -atom parameters not refined

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ} \\
& h=-4 \rightarrow 10 \\
& k=-15 \rightarrow 6 \\
& l=0 \rightarrow 29 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.093 P)^{2}\right. \\
&+1.0454 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

F1-C4	$1.359(3)$	$\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$1.538(4)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.430(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.533(3)$
$\mathrm{O} 3-\mathrm{C} 12$	$1.214(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.461(4)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.563(4)$	$\mathrm{C} 13-\mathrm{C} 18$	$1.382(4)$
$\mathrm{C} 10-\mathrm{C} 18$	$1.529(3)$		
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 10^{\mathrm{i}}$	$-154.8(3)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 12^{\mathrm{i}}$	$82.6(2)$

[^0]

Figure 2
The crystal structure of (I), projected along a. H atoms have been omitted for clarity.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{2}-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.99	$2.766(3)$	158

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y, z$.
The hydroxyl H atom was located in a difference synthesis and was allowed to ride on the parent atom. The other H atoms were positioned geometrically and fixed, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Ohba, S., Yamamoto, Y. \& Tanaka, K. (2003). Acta Cryst. C59, o370-o372.
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tanaka, K., Yamamoto, Y. \& Ohba, S. (2003). Chem. Commun. pp. 1866-1867. Xu, L., Huang, H., Song, Z., Meng, J. \& Matuura, T. (2002). Tetrahedron Lett. 43, 7435-7439.

[^0]: Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y, z$.

