Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shigeru Ohba,^a* Yohei Yamamoto^b and Koichi Tanaka^b

^aDepartment of Chemistry, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and ^bDepartment of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan

Correspondence e-mail: ohba@flet.keio.ac.jp

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.054 wR factor = 0.190 Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

C 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

*rac-3,3'-*Bis(4-fluorophenyl)-3,3'-dihydroxy-2,3,2',3'-tetrahydro-[2,2']biindenyl-1,1'-dione

The title compound, $C_{30}H_{20}F_2O_4$, has been obtained as a byproduct in the preparation of biindenylidene compounds. The molecule has a twofold axis. There are intramolecular O– H···O hydrogen bonds. Received 25 July 2003 Accepted 1 August 2003 Online 8 August 2003

Comment

Photochromism of the inclusion crystals of a hydroperoxybiindenylidene has been reported recently by Tanaka *et al.* (2003). The title compound, (I), was obtained as a by-product in the preparation of the biindenylidene compounds.

The molecule (I) has a twofold axis, which is parallel to c(Figs. 1 and 2). The central $C11-C11^{i}$ bond [symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, z$] is a single bond (Table 1), which corresponds to no photochromic property of (I), since the photochromism of these crystals seems to be due to the biradical caused by breaking the π -bond at the center of the biindenylidene moiety (Ohba et al., 2003). The indene ring system is not planar, as the five-membered ring has an envelope conformation, with atom C11 in the flap position. The angle between the planes composed of atoms C12-C18/C10 and C10-C12 is 14.45 (4)°. The angle between the C10-C7 and its symmetryrelated bond vector is $25.8 (1)^\circ$, and the dihedral angle between the two fluorophenyl rings is $12.15 (10)^{\circ}$. However, the shortest interatomic distance between the fluorophenyl rings is 4.597 (6) Å for $C6 \cdots C6^{i}$, and there is no intramolecular π - π interaction.

There are intramolecular $O2-H2\cdots O3^i$ hydrogen bonds (Table 2), but no intermolecular hydrogen bonds. This situation contrasts with the crystal structure of the hydroperoxybindenylidene compound, which forms a ladder structure through the $O-H\cdots O$ intermolecular hydrogen bonds, accommodating several guest molecules (Tanaka *et al.*, 2003).

Experimental

Compound (I) was obtained in trace amounts as a by-product in the treatment of 3,3'-bis(4-fluorophenyl)-[2,2']biindenyl-1,1'-dione with Zn and ZnCl₂ in aqueous tetrahydrofuran to obtain 3,3'-bis(4-fluorophenyl)-3H,3'H-[2,2']biindenylidene-1,1'-dione (22% yield) and 3,1'-bis(4-fluorophenyl)-1'-hydroperoxy-3'-hydroxy-1',3'-dihydro-3H-[2,2']biindenyliden-1-one (7% yield; Tanaka *et al.*, 2003). The

A view of the molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. [Symmetry code: (*) $\frac{1}{2} - x$, $\frac{1}{2} - y$, z.]

reaction mechanism which gave (I) is expected to be similar to that reported by Xu *et al.* (2002). Colourless crystals of (I) were grown from an ethyl acetate solution by slow evaporation (m.p. 482–485 K).

Crystal data

$C_{30}H_{20}F_2O_4$
$M_r = 482.48$
Orthorhombic, Pccn
a = 8.303 (2) Å
b = 12.011 (3) Å
c = 22.868 (6) Å
$V = 2280.6 (10) \text{ Å}^3$
Z = 4
$D_x = 1.405 \text{ Mg m}^{-3}$

Data collection

Rigaku AFC-7*R* diffractometer ω scans Absorption correction: none 3523 measured reflections 2622 independent reflections 1644 reflections with $I > 2\sigma(I)$ $R_{int} = 0.010$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma F^2] = 0.054$ $wR(F^2) = 0.190$ S = 1.03 2622 reflections 164 parameters H-atom parameters not refined

Table 1

Selected geometric parameters (Å, °).

F1-C4	1.359 (3)	C11-C11 ⁱ	1.538 (4)
O2-C10	1.430 (3)	C11-C12	1.533 (3)
O3-C12	1.214 (4)	C12-C13	1.461 (4)
C10-C11	1.563 (4)	C13-C18	1.382 (4)
C10-C18	1.529 (3)		
$C10 - C11 - C11^i - C10^i$	-154.8 (3)	$C10 - C11 - C11^i - C12^i$	82.6 (2)
a . 1 (b.1 1			

Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, z$.

Mo $K\alpha$ radiation
Cell parameters from 20
reflections
$\theta = 13.0 - 14.5^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 298 K
Plate, colourless
$0.5 \times 0.4 \times 0.3 \text{ mm}$

$\theta_{\rm max} = 27.5^{\circ}$
$h = -4 \rightarrow 10$
$k = -15 \rightarrow 6$
$l = 0 \rightarrow 29$
3 standard reflections
every 150 reflections
intensity decay: non
5 5

$w = 1/[\sigma^2(F_o^2) + (0.093P)^2]$
+ 1.0454P]
where $P = (F_o^2 + 2F_c^2)/2$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$

Figure 2

The crystal structure of (I), projected along a. H atoms have been omitted for clarity.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O3^i$	0.82	1.99	2.766 (3)	158
Symmetry code: (i)	$\frac{1}{1-x} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$			

Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, z$.

The hydroxyl H atom was located in a difference synthesis and was allowed to ride on the parent atom. The other H atoms were positioned geometrically and fixed, with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation (2001). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.

Ohba, S., Yamamoto, Y. & Tanaka, K. (2003). Acta Cryst. C59, 0370-0372.

Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Tanaka, K., Yamamoto, Y. & Ohba, S. (2003). *Chem. Commun.* pp. 1866–1867.
Xu, L., Huang, H., Song, Z., Meng, J. & Matuura, T. (2002). *Tetrahedron Lett.* 43, 7435–7439.